Abstract

Oxidative stress (OS) is essential in uremia-associated comorbidities, including renal anemia. Complications experienced by hemodialysis (HD) patients, such as hypoxemia and uremic toxins accumulation, induce OS and premature death of red blood cells (RBC). We aimed to characterize reactive oxygen species (ROS) production and antioxidant pathways in HD-RBC and RBC from healthy controls (CON-RBC) and evaluate the role of uremia and hypoxia in these pathways. ROS production, xanthine oxidase (XO) and superoxide dismutase (SOD) activities, glutathione (GSH), and heme oxygenase-1 (HO-1) levels were measured using flow cytometry or spectrophotometry in CON-RBC and HD-RBC (pre- and post-HD), at baseline and after 24 h incubation with uremic serum (S-HD) and/or under hypoxic conditions (5% O2 ). Ketoprofen was used to inhibit RBC uremic toxins uptake. HD-RBC showed higher ROS levels and lower XO activity than CON-RBC, particularly post-HD. GSH levels were lower, while SOD activity and HO-1 levels of HD-RBC were higher than control. Hypoxia per setriggered ROS production in CON-RBC and HD-RBC. S-HD, on top of hypoxia, increased ROS levels. Inhibition of uremic toxins uptake attenuated ROS of CON and HD-RBC under hypoxia and uremia. CON-RBC in uremia and hypoxia showed lower GSH levels than cells in normoxia and non-uremic conditions. Redox mechanisms of HD-RBC are altered and prone to oxidation. Uremic toxins and hypoxia play a role in unbalancing these systems. Hypoxia and uremia participate in the pathogenesis of OS in HD-RBC and might induce RBC death and thus compound anemia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call