Abstract

Recent evidence has implicated the transforming growth factor-alpha (TGF alpha)/epidermal growth factor receptor (EGFR) system in the mechanism by which hypothalamic lesions accelerate female sexual development. Since acquisition and maintenance of reproductive functions depend on the secretory activity of LHRH neurons, the present studies were undertaken to characterize some of the cellular and molecular events that underlie lesion-induced activation of the LHRH neuronal network. Bilateral electrolytic lesions of the posterior portion of the preoptic region and anterior hypothalamic area (POA-AHA) in 22-day-old rats resulted in vaginal opening and ovulation within 7 days. Morphological maturation of LHRH neurons was assessed by the relative frequency of irregular and smooth neurons (the former being the predominant type in adult animals). Within 20 h after the lesion, there was a significant decrease in the proportion of LHRH neurons with spiny irregular contours, indicating reversal to a more immature morphological type. This change was followed by accelerated spine reformation, so that at the time of precocious proestrus, the incidence of irregular LHRH neurons was similar in lesioned and age-matched control rats. A striking increase in c-fos mRNA levels occurred within 1 h after the lesion in the area neighboring the site of injury, reflecting the immediate cell response to trauma. Immunohistochemical localization of the c-fos protein, used to estimate changes in cellular activity at the single cell level, demonstrated c-fos induction in unidentified cells near the lesion and astrocytes, but not in LHRH neurons 20 h after injury. In contrast, a selective increase in c-fos expression was observed in LHRH neurons during the initiation of precocious puberty 5-7 days later at the time of the first proestrus. An increase in plasma LH associated with a drop in LHRH content in the median eminence and an increase in pro-LHRH precursor in the POA-AHA, with no changes in LHRH mRNA, was found to antedate the first preovulatory surge of gonadotropins in lesioned rats. Assessment of the changes in PC2 mRNA, which encodes a novel dibasic endoprotease presumptively involved in tissue-specific processing of a class of prohormones that includes pro-LHRH, showed that the content of PC2 mRNA in the AHA-POA increases during normal puberty, but not in lesioned animals, thus providing a potential explanation for the divergent changes in pro-LHRH and mature decapeptide found in lesioned rats.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call