Abstract

To study the influence of plasma protein concentration on fluid balance in the newborn lung, we measured pulmonary arterial and left atrial pressures, lung lymph flow, and concentrations of protein in lymph and plasma of eight lambs, 2-3 wk old, before and after we reduced their plasma protein concentration from 5.8 +/- 0.3 to 3.6 +/- 0.6 g/dl. Each lamb underwent two studies, interrupted by a 3-day period in which we drained protein-rich systemic lymph through a thoracic duct fistula and replaced fluid losses with feedings of a protein-free solution of electrolytes and glucose. Each study consisted of a 2-h control period followed by 4 h of increased lung microvascular pressure produced by inflation of a balloon in the left atrium. Body weight and vascular pressures did not differ significantly during the two studies, but lung lymph flow increased from 2.6 +/- 0.1 ml/h during normoproteinemia to 4.1 +/- 0.1 ml/h during hypoproteinemia. During development of hypoproteinemia, the average difference in protein osmotic pressure between plasma and lymph decreased by 1.6 +/- 2 Torr at normal left atrial pressure and by 4.9 +/- 2.2 Torr at elevated left atrial pressure. When applied to the Starling equation governing microvascular fluid balance, these changes in liquid driving pressure were sufficient to account for the observed increases in lung fluid filtration; reduction of plasma protein concentration did not cause a statistically significant change in calculated filtration coefficient. Protein loss did not influence net protein clearance from the lungs nor did it accentuate the increase in lymph flow associated with left atrial pressure elevation.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call