Abstract

The effect of hypertonic saline on rat hypothalamic paraventricular nucleus (PVN) magnocellular neurons was examined using a whole-cell patch-clamp technique. Under a current-clamp, 58/68 of magnocellular neurons were depolarized by hypertonic stimulation. Under a voltage-clamp, hypertonic saline produced an inward current via increased non-selective cationic conductance and shifting of the reversal potential to more positive values. Furthermore, hypertonic saline even without a change in osmolality increased spontaneous excitatory postsynaptic currents (sEPSCs). A bath application of CNQX almost completely blocked EPSCs. Extracellular application of gadolinium blocked the hypertonic saline- and mannitol-induced response. These results suggest that PVN magnocellular neurons are responsive to osmolality and Na + concentrations. Hypertonic saline excited PVN magnocellular neurons via osmo-reception, Na +-detection, and excitatory glutamatergic synaptic input.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call