Abstract
Abstract. Deep Learning (DL) networks used in image segmentation tasks must be trained with input images and corresponding masks that identify target features in them. DL networks learn by iteratively adjusting the weights of interconnected layers using backpropagation, a process that involves calculating gradients and minimizing a loss function. This allows the network to learn patterns and relationships in the data, enabling it to make predictions or classifications on new, unseen data. Training any DL network requires specifying values of the hyperparameters such as input image size, batch size, and number of epochs among others. Failure to specify optimal values for the parameters will increase the training time or result in incomplete learning. The rationale of this study was to evaluate the effect of input image and batch sizes on the performance of DeepLabV3+ using Sentinel 2 A/B RGB images and labels obtained from Kaggle. We trained DeepLabV3+ network six times with two sets of input images of 128 × 128-pixel, and 256 × 256-pixel dimensions with 4, 8 and 16 batch sizes. The model is trained for 100 epochs to ensure that the loss plot reaches saturation and the model converged to a stable solution. Predicted masks generated by each model were compared to their corresponding test mask images based on accuracy, precision, recall and F1 scores. Results from this study demonstrated that image size of 256 × 256 and batch size 4 achieved highest performance. It can also be inferred that larger input image size improved DeepLabV3+ model performance.
Full Text
Topics from this Paper
Input Image Size
Deep Learning Networks
Image Size
Batch Size
Input Image
+ Show 5 more
Create a personalized feed of these topics
Get StartedTalk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Sep 10, 2018
International Journal of Computational Vision and Robotics
Jan 1, 2022
Jul 16, 2021
Sensors
Nov 20, 2022
iScience
Apr 1, 2022
Neuroinformatics
May 27, 2022
Computers and Electronics in Agriculture
Jan 1, 2023
NTU Journal of Engineering and Technology
Apr 4, 2023
Sep 29, 2020
Studies in health technology and informatics
May 27, 2021
Nihon Hoshasen Gijutsu Gakkai zasshi
Jan 1, 2022
Reports of Practical Oncology and Radiotherapy
Feb 25, 2021
Agronomy
Feb 23, 2021
Dec 12, 2020
Serbian Journal of Electrical Engineering
Jan 1, 2017
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Oct 19, 2023
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Oct 19, 2023
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Oct 19, 2023
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Oct 19, 2023
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Oct 19, 2023
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Oct 19, 2023
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Oct 19, 2023
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Oct 19, 2023
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Oct 19, 2023
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Oct 19, 2023