Abstract

The effect of preexisiting hyperglycemia on cerebral blood flow (CBF) and brain penetrating arterioles before and after 2 h of ischemia and 30 min of reperfusion was determined. Male Wistar rats that were either hyperglycemic (50 mg/kg streptozotocin; n=24) or normoglycemic (n=24) were subjected to transient ischemia by filament occlusion or nonischemic. CBF was measured prior to ischemia using microspheres and during transient ischemia using laser Doppler. Edema was compared by wet/dry weights. Constriction to apamin, TRAM-34, and L-NNA, inhibitors of small- and intermediate-conductance calcium-activated potassium channels (SK and IK) and nitric oxide, were compared in penetrating arterioles from the ischemic hemisphere to investigate changes in basal tone and endothelium-dependent vasodilator responses. Preexisiting hyperglycemia did not affect CBF in non-ischemic animals or after transient ischemia; however, edema was significantly greater. Ischemia and reperfusion caused decreased basal tone in penetrating arterioles similarly in normoglycemic and hyperglycemic animals that was restored by apamin, and further increased by TRAM-34 and L-NNA. The restoration of tone in penetrating arterioles by apamin and TRAM-34 suggests that transient ischemia activates SK and IK channels in penetrating arterioles. This effect of ischemia was not different between normoglycemic and hyperglycemic animals, suggesting that it was related to ischemia and reperfusion rather than hyperglycemia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call