Abstract
The influence of the hyperfine structure (hfs) of the levels upon the light-induced drift (LID) effect is investigated. It is shown that hfs considerably affects the dependence of the LID velocity upon the radiation frequency. It is concluded that for decreasing separation between the hfs components the LID effect can both increase and decrease depending upon the relationship of the system parameters (collision frequencies in different levels, the pressure of a buffer gas, etc.). A considerable decrease of the effect however is highly unlikely. It is shown that a change in the buffer gas pressure can lead to reversal of the LID velocity direction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica B+C
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.