Abstract

The effects of hypercorticism on the regulation of glycogen metabolism by insulin in skeletal muscles was examined by using the hindlimb perfusion technique. Rats were injected daily with either saline or dexamethasone (0.4 mg.kg-1.day-1) for 14 days and were studied in the fed or fasted (24 h) state under saline or insulin (1 mU/ml) treatment. In fed controls, insulin resulted in glycogen synthase activation and in enhanced glycogen synthesis. In dexamethasone-treated animals, basal muscle glycogen concentration remained normal, but glycogen synthase activity ratio was decreased in white and red gastrocnemius and plantaris muscles. Furthermore, insulin failed to activate glycogen synthase and glycogen synthesis. In the controls, fasting was associated with decreased glycogen concentrations and with increased glycogen synthase activity ratio in all four groups of muscles (P less than 0.01). Dexamethasone treatment, however, completely abolished the decrease in muscle glycogen content as well as the augmented glycogen synthase activity ratio associated with fasting. Insulin infusion stimulated glycogen synthesis in fasted controls but not in dexamethasone-treated rats. These data therefore indicate that dexamethasone treatment inhibits the stimulatory effect of insulin on glycogen synthase activity and on glycogen synthesis. Furthermore, hypercorticism suppresses the decrease in muscle glycogen content associated with fasting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call