Abstract

On the basis of electronic structure calculations and molecular orbital analysis, we offer a physical explanation of the observed large decrease (0.9 eV) in ionization energies (IE) in going from hydroxymethyl to hydroxyethyl radical. The effect is attributed to hyperconjugative interactions between the sigma CH orbitals of the methyl group in hydroxyethyl, the singly occupied p orbital of carbon, and the lone pair p orbital of oxygen. Analyses of vertical and adiabatic IEs and hyperconjugation energies computed by the natural bond orbital (NBO) procedure reveal that the decrease is due to the destabilization of the singly occupied molecular orbital in hydroxyethyl radical as well as structural relaxation of the cation maximizing the hyperconjugative interactions. The stabilization is achieved due to the contraction of the CO and CC bonds, whereas large changes in torsional angles bear little effect on the total hyperconjugation energies and, consequently, IEs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.