Abstract

AbstractA series of hyperbranched poly(citric polyethylene glycol) (PCPEG) materials with varied polyethylene glycol (PEG) chain lengths as plasticizers were mixed with maize starch (MS) via cooking and film‐forming. The structure, pasting property, plasticization, aging property, moisture absorption and compatibility of plasticized starches were studied by means of Fourier transform infrared spectroscopy, X‐ray diffraction, rapid viscosity analysis, tension testing, moisture absorption measurements and scanning electron microscopy. Compared with PEG and citric acid, PCPEG was more effective in promoting starch chain movement and inhibiting the retrogradation of starch film. Also, PCPEG/MS had smaller moisture content. The longer the plasticizer chain, the better were the aging resistance and moisture resistance of starch. But with an increase of PEG chain length, mechanical properties of PCPEG/MS deteriorated and the compatibility between PCPEG and MS decreased. The hyperbranched derivative of PEG with longer chain exhibited improved plasticization and compatibility with starch. © 2019 Society of Chemical Industry

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call