Abstract

The energy loss rate of hot electrons with the non-equilibrium phonons in narrowgap semiconductors with hyperbolic band structures has been investigated in the extreme quantum limit condition in the low temperature region. The calculation is done for n-Hg0.8Cd0.2Te sample considering electron scattering by acoustic phonons via piezoelectric coupling to be the dominant loss mechanism. The value of the energy loss rate with hyperbolic band is compared with the results of parabolic and non-parabolic band structures and at the same time all the results are also compared with the experimentally observed data. It is found that with the inclusion of hyperbolic band structure, the value of energy loss rate is found to be close to the experimental values. The dependence of energy loss rate on magnetic field and lattice temperature has been studied. Using the experimental value of the energy loss rate, the phonon life time is evaluated. The value of the phonon life time is found to be of the order of the phonon boundary relaxation time indicating that phonon boundary scattering is the dominant phonon dissipation mechanism. The dependence of the phonon life time on magnetic field, and lattice temperature has also been studied. The phonon life time is also found to decrease with increase in electron temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call