Abstract

BackgroundThe aim of this study was to investigate the protective effect and mechanism of hyperbaric oxygen (HBO) in a rat model of renal ischemia-reperfusion injury following kidney transplantation.Material/MethodsSprague Dawley rats were randomly divided into 3 groups (n=18): sham group, kidney transplantation group, and HBO treatment group. Six rats in each group were sacrificed at 1, 3, and 5 hours after reperfusion, and serum and renal tissue were then collected. The serum creatinine levels and histopathological changes of the renal tissue were detected. ICAM-1, VCAM-1, and C3 expression levels were also detected by immunohistochemical staining or real-time polymerase chain reaction.ResultsRenal function was damaged in the kidney transplantation group and the HBO treatment group compared with sham group (P<0.05). Renal histopathological changes, including tubular cell swelling, tubular dilatation, and hyaline casts, were remarkably reduced in the HBO treatment group compared to the kidney transplantation group. In the immunohistochemical examination, the expression levels of ICAM-1, VCAM-1, and C3 were obviously increased in the kidney transplantation group and the HBO treatment group; moreover, the levels in the HBO treatment group were significantly lower than in the kidney transplantation group (P<0.05). In addition, the ICAM-1 and C3 mRNA levels were increased in the kidney transplantation group and HBO treatment group, but the levels of in the HBO treatment group them were significantly decreased compared to the kidney transplantation group that at 3 and 5 hours after reperfusion (P<0.05).ConclusionsHBO treatment exerted a protective effect on renal function through inhibition of adhesion molecule overexpression and complement system activation in a rat model of renal ischemia-reperfusion injury after kidney transplantation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.