Abstract
We have previously demonstrated that a transient exposure to hyperbaric oxygen (HBO) attenuated the neuronal injury after neonatal hypoxia-ischemia. This study was undertaken to determine whether HBO offers this neuroprotection by reducing apoptosis in injured brain tissue. Seven-day-old rat pups were subjected to unilateral carotid artery ligation followed by 2 h of hypoxia (8% oxygen). Apoptotic cell death was examined in the injured cortex and hippocampus tissue. Caspase-3 expression and activity increased at 18 and 24 h after the hypoxia-ischemia insult. At 18-48 h, poly(ADP-ribose) polymerase (PARP) cleavage occurred, which reduced the band at 116 kDa and enhanced the band at 85 kDa. There was a time-dependent increase in the number of terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL)-positive cells. A single HBO treatment (100% oxygen, 3 ATA for 1 h) 1 h after hypoxia reduced the enhanced caspase-3 expression and activity, attenuated the PARP cleavage, and decreased the number of TUNEL-positive cells observed in the cortex and hippocampus. These results suggest that the neuroprotective effect of HBO is at least partially mediated by the reduction of apoptosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Applied Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.