Abstract

This study investigates the mechanical degradation mechanism and statistical analysis of residual compressive strength of three lay-up laminates under more than one-year seawater environment. Fick and Langmuir model were used to describe the moisture absorption process with a maximum moisture equilibrium content of 3.78% and various characterization methods were used to reveal the microstructural evolution of CFRP during aging. Experimental results demonstrate that the multiple fiber directions in the MD specimens provide additional moisture absorption channels, leading to a stronger wicking effect and a higher equilibrium moisture content. The layups can significantly affect the compression failure mode after long-term aging. The compressive strength of the cross-ply and multidirectional laminates decreased by 50% while that of unidirectional laminates decreased by 28%, and surface cracking is easily observed in the aged specimens. An empirical prediction model based on the Langmuir model and experimental data was proposed and verified by the data from the literature, with at least a 10% improvement in prediction accuracy. Meanwhile the three-parameter Weibull distribution was used to describe the residual compressive strength after hygrothermal aging and tested by Kolmogorov-Smirnov test. It is expected to provide insight for the application of CFRP in seawater environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call