Abstract

The degradation of peptide drugs limits the application of peptide drug microspheres. Structural changes of peptides at the water–oil interface and the destruction of their spatial structure in the complex microenvironment during polymer degradation can affect drug release and in vivo biological activity. This study demonstrates that adding hydroxyethyl starch (HES) to the internal aqueous phase (W1) significantly enhances the stability of semaglutide and optimizes its release behavior in PLGA microspheres. The results showed that this improvement was due to a spontaneous exothermic reaction (ΔH = −132.20 kJ mol−1) facilitated by hydrogen bonds. Incorporating HES into the internal aqueous phase using the water-in-oil-in-water (W1/O/W2) emulsion method yielded PLGA microspheres with a high encapsulation rate of 94.38 %. Moreover, microspheres with HES demonstrated well-controlled drug release over 44 days, unlike the slower and incomplete release in microspheres without HES. The optimized h-MG2 formulation achieved a more complete drug release (83.23 %) and prevented 30.65 % of drug loss compared to the HES-free microspheres within the same period. Additionally, the optimized semaglutide microspheres provided nearly three weeks of glycemic control with adequate safety. In conclusion, adding HES to the internal aqueous phase improved the in-situ drug stability and release behavior of semaglutide-loaded PLGA microspheres, effectively increasing the peptide drug payload in PLGA microspheres.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.