Abstract

AimTo evaluate the adhesion of mono and duospecies biofilm on a commercially available dental implant surface coated with hydroxyapatite nanoparticles (nanoHA). Material and methodsTitanium discs were divided into two groups: double acid-etched (AE) and AE coated with nanoHA (NanoHA). Surface characteristics evaluated were morphology, topography, and wettability. Mono and duospecies biofilms of Streptococcus sanguinis (S. sanguinis) and Candida albicans (C. albicans) were formed. Discs were exposed to fetal bovine serum (FBS) to form the pellicle. Biofilm was growth in RPMI1640 medium with 10% FBS and 10% BHI medium for 6 h. Microbial viability was evaluated using colony-forming unit and metabolic activity by a colorimetric assay of the tetrazolium salt XTT. Biofilm architecture and organization were evaluated by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). ResultsAE surface had more pores, while NanoHA had even nanoHA crystals distribution. Roughness was similar (AE: 0.59 ± 0.07 µm, NanoHA: 0.69 ± 0.18 µm), but wettability was different (AE: Θw= 81.79 ± 8.55°, NanoHA: Θw= 53.26 ± 11.86°; P = 0.01). NanoHA had lower S. sanguinis viability in monospecies biofilm (P = 0.007). Metabolic activity was similar among all biofilms. In SEM both surfaces on C. albicans biofilm show a similar distribution of hyphae in mono and duospecies biofilms. AE surface has more S. sanguinis than the NanoHA surface in the duospecies biofilm. CLSM showed a large proportion of live cells in all groups. ConclusionsThe nanoHA surface reduced the adhesion of S. sanguinis biofilm but did not alter the adhesion of C. albicans or the biofilm formed by both species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call