Abstract

The micro-arc oxidization (MAO) ceramic layer on an LA103Z Mg-Li alloy substrate was treated with a hydrothermal treatment at 90 °C for various times. The effect of the hydrothermal treatment time on the microstructure and corrosion behavior of MAO/LDH composite coatings in 3.5 wt.% NaCl solution was investigated, and the mechanism of hydrothermal film formation and corrosion was discussed. The results show that MgO on the surface of the MAO ceramic coating was partially dissolved during the hydrothermal treatment, and the released Mg2+ ions combined with OH− ions in the hydrothermal solution to form Mg(OH)2 nanosheets, which were deposited on the surface of the ceramic coating and its pores. The hydrogen evolution rates of the MAO/LDH composite coatings rank as MAO/LDH-24 h < MAO/LDH-18 h < MAO < MAO/LDH-12 h. A MAO/LDH composite coating had the minimum weight loss, which proves that the MAO/LDH composite coating prepared by MAO and hydrothermal treatment has better corrosion resistance than a single MAO ceramic layer and adds long-term corrosion resistance to the magnesium alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.