Abstract

We studied the catalytic and antimicrobial properties of hierarchical architecture of WO3.Ag synthesized at 100, 150, and 200 °C by a very simple and reliable hydrothermal technique. The investigation carried out by XRD showed the amorphous nature of sample grown at 100 °C, while those at 150 and 200 °C crystalline nature of 3D WO3.Ag was confirmed. From FESEM and HRTEM results, it was evident that the silver nanoparticles grew in a 3D WO3.Ag host matrix. The average diameter of Ag nanoparticles by HRTEM was around 5–15 nm. Photocatalytic activities of as-prepared samples were evaluated by the degradation of rhodamine B (RhB). Samples prepared at 150 and 200 °C showed higher activity in comparison to sample prepared at 100 °C. This can be mainly attributed to the suppression of traps states and electron/hole pairs recombination as highlighted by the photoluminescence results. The as-synthetized samples showed promising antimicrobial features against various bacterial strains. The 100 °C WO3.Ag nanospheres exhibited the highest antibacterial activity, with very low minimum inibitory concentration (MIC) values (4.0–8.0 μg/ml) when compared with 150 and 200 °C samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call