Abstract

AbstractThe hydrothermal corrosion behavior of SiC layer in tristructural‐isotropic (TRISO) fuel particles and its effect on the fracture strength were investigated. The corrosion test was performed using the static autoclave at 400°C/10.3 MPa. The SiC layer exhibited a thickness loss and the corrosion rate followed a linear law. During corrosion, carbon was formed on the SiC surface due to the loss of Si. The corrosion was found preferentially occurred at the grain boundary of SiC, leading to the grain detachment and pit formation. The rate determining step of the corrosion was SiO2 formation rather than SiO2 dissolution in the hydrothermal environment. The fracture strength of SiC shell after corrosion was evaluated using the crush test. It showed a slight decrease with an increase in corrosion time, due to the thickness reduction in SiC layer. The results of this study demonstrated that the SiC in TRISO particles has good corrosion resistance in the hydrothermal environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.