Abstract

The development of biomass-based CQD is highly attentive to enhancing photocatalytic performance, especially in secondary or ternary heterogeneous photocatalysts by allowing for smooth electron-hole separation and migration. In this study, kenaf-based carbon quantum dots (CQD) were prepared. The main objective of the current work was to investigate temperature, precursor mass and time in hydrothermal synthesis treatment to improve the CQD properties and methylene blue photocatalytic degradation. Optimization of kenaf-based CQD for inclusion in hydrothermal treatment was analyzed. The as-prepared CQDs were characterized in detail by Fourier transform infrared (FTIR) spectroscopy, using a Hitachi TEM System (HT7830, RuliTEM, Tokyo, Japan), by photoluminescence (PL), and by ultraviolet-visible (UV-Vis) spectroscopy. It was found that C200-0.5-24 exhibits a higher photocatalytic activity of the methylene blue dye and optimized hydrothermal conditions of 200 °C, 0.5 g and 24 h. Therefore, novel kenaf-based CQD was synthesized for the first time and was successfully optimized in the as-mentioned conditions. During the hydrothermal treatment, precursor mass controls the size and the distribution of CQD nanoparticles formed. The C200-0.5-24 showed a clearly defined and well-distributed CQD with an optimized nanoparticle size of 8.1 ± 2.2 nm. Indeed, the C200-0.5-24 shows the removal rate of 90% of MB being removed within 120 min.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.