Abstract
ABSTRACT Single crystal of the stoichiometric Ni2MnSn alloy (cubic L21 crystal structure) was prepared by the Czochralski method. The values of the magneto-crystalline anisotropy constant K 1 have been determined at temperature 10 K under ambient and high hydrostatic pressures, K 1 = + 0.17 × 104 and +1.96 × 104 J/m3 (0.7 GPa), respectively. The pressure-induced decrease of magnetization was confirmed and hence the significant non-trivial increase of uniaxial anisotropy with increasing pressure points to a possible distortion of the cubic structure of the single crystal under hydrostatic pressure. Simultaneously, the more pronounced and pressure almost insensitive magneto-crystalline anisotropy, K 1 = + 9.1 × 104 J/m3, has been observed in the martensite phase (orthorhombic structure) of the off-stoichiometric Ni2Mn1.43Sn0.57 alloy. The effect of a directional dependence of the Young modulus that was theoretically derived in the case of the Ni2MnSn-based alloys is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.