Abstract
The hydrostatic forces of a floating platform play an important role in the stability and dynamic behavior of floating wind turbines. Hydrostatic forces are most commonly obtained from a linear hydrostatic stiffness matrix. Linear hydrostatic stiffness is based on the initial position of the floating platform and thus neglects the rotational motion of the floating wind turbine. In this article, the nonlinear hydrostatic stiffness of a floating spar platform was analytically derived with the aim of studying the effect of hydrostatic nonlinearity on the dynamic response. The floating wind turbine was modeled as a multibody system for which the equation of motion was obtained by using the Newton-Euler approach. The mooring lines connected to the floating wind turbine were modeled quasi-statically using catenary equations. A sensitivity analysis based on the comparison of linear and nonlinear hydrostatic forces was conducted to quantitatively evaluate the importance of hydrostatic nonlinearity. The effect of hydrostatic nonlinearity on the response of the floating wind turbine was investigated through analysis of the OC3-Hywind wind turbine in extreme environmental conditions. Results showed that in the case of large amplitude rotations, the use of nonlinear hydrostatic stiffness predicted the response with improved accuracy by accounting for rotational motion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.