Abstract

The present study concerns hydrophobic surface treatments with silane‐based liquid and crème on the concrete surface against external ionic transport for the application to concrete pavement coating. To quantify their effectiveness in mitigating the ionic penetration, water absorption and chloride transport were measured. Especially, back‐scattered image analysis and the electrochemical impedance spectroscopy were used to identify the effect of pore‐blocking at the interface of coating agents and the concrete. As a result, the surface treatment with both liquid and crème could significantly reduce the water absorption and chloride ingresses at all depths of measured concrete, due to a modification of the porosity. Moreover, the surface treatment on concrete substrate increased the polarization resistance, thereby enhancing the resistance to ionic transport into the concrete, and the crème type was slightly more effective at the same dosage of treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.