Abstract
As a unique surface wettability, superhydrophobicity has great application value. A variety of preparation methods for superhydrophobic surfaces have been reported, which have the disadvantages of high cost and complicated process. In order to design a method that is easy to operate, low-cost, and suitable for large-scale preparation of superhydrophobic surfaces, in this paper, hydrophobic nano-SiO2 particles are used as spray fillers, and superhydrophobic surfaces are successfully obtained by the spraying process. According to the classical Cassie and Wenzel theory, the influence of the concentration change of hydrophobic nano-SiO2 particles on their wettability is explained, and the appropriate spray concentration parameters are obtained. The results show that the proportion of hydrophobic nano-SiO2 particles is lower than 0.05 g/mL, which will lead to insufficient microstructure on the surface of the coating, and cannot support the droplets to form the air bottom layer. However, an excessively high proportion of hydrophobic nano-SiO2 particles will reduce the connection effect of the silicone resin and affect the durability of the surface. Through theoretical analysis, there are Wenzel state, tiled Cassie state, and stacked Cassie state in the spraying process. When the substrate surface enters the Cassie state, the lower limit of the contact angle is 149°. This study has far-reaching implications for advancing the practical application of superhydrophobic surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.