Abstract

To boost the implementation of colloidal crystals (CCs) in separation science, the effects of the most common chromatographic reversed phases, that is, butyl and octadecyl, on the assembly of silica particles into CCs and on the optical properties of CCs are investigated. Interestingly, particle surface modification can cause phase separation during sedimentation because the assembly is highly sensitive to minute changes in surface characteristics. Solvent-induced surface charge generation through acid-base interactions of acidic residual silanol groups with the solvent is enough to promote colloidal crystallization of modified silica particles. In addition, solvation forces at small interparticle distances are also involved in colloidal assembly. The characterization of CCs formed during sedimentation or via evaporative assembly revealed that C4 particles can form CCs more easily than C18 particles because of their low hydrophobicity; the latter can only form CCs in tetrahydrofuran when C18 chains with a high bonding density have extra hydroxyl side groups. These groups can only be hydrolyzed from trifunctional octadecyl silane but not from a monofunctional one. Moreover, after evaporative assembly, CCs formed from particles with different surface moieties exhibit different lattice spacings because their surface hydrophobicity and chemical heterogeneity can modulate interparticle interactions during the two main stages of assembly: the wet stage of crystal growth and the late stage of nano dewetting (evaporation of interparticle solvent bridges). Finally, short, alkyl-modified CCs were effectively assembled inside silica capillaries with a 100 μm inner diameter, laying the foundation for future chromatographic separation using capillary columns.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.