Abstract
End-functional 2-methacryloyloxyethyl phosphorylcholine (MPC) co-polymers containing two different monomer units, 2-hydroxyethyl methacrylate (HEMA) and n-butyl methacrylate (BMA), with varying hydrophilicities were synthesized to investigate the effect of the conjugated hydrophilic polymer on the heat-induced conformational changes of a protein. MPC co-polymer-conjugated proteins containing the HEMA unit (PMH) could withstand thermal conformational changes better than those containing the more hydrophobic BMA unit (PMB). The changes in protein tertiary structures were estimated via the excitation of tryptophan. PMH-conjugated proteins could withstand heat-induced intensity changes better than the PMB-conjugated proteins. Thus, hydrophilic units in the conjugated polymer are probably essential in suppressing the heat-induced conformational changes of a protein. The changes in secondary and tertiary structures of poly(MPC)-(PMPC) and poly(HEMA) (PHEMA)-conjugated proteins were compared to validate the effect of MPC units on heat-induced conformational change. Although the thermally induced conformational changes in the secondary and tertiary structures of PHEMA-conjugated proteins were partially suppressed, the effect on PMPC-conjugated proteins was much greater, with significant conformational preservation. This is due to the specific hydration state of the hydrophilic PMPC chain, which reduces interaction between the protein molecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.