Abstract

AbstractCyclohexene (CHE) hydroconversion was performed in a flow reactor at atmospheric pressure and temperatures of 50–400 °C using: Pd/H‐ZSM‐5, Pd/H‐ZSM‐5(HCl), and Pd/H‐ZSM‐5(HF) catalysts. These catalysts were characterized for acid site strength distribution via NH3 TPD, Pd dispersion via H2 chemisorption, TPR via reduction of the metal oxide in the catalysts and XRD for tracing crystallinity The hydroconversion steps proceeded as follows: CHE → Cyclohexane (CHA); CHE → Methylcyclopentenes (MCPEs) → Methylcyclopentane (MCPA); CHE → Cyclohexadienes (CHDEs) → Benzene → Alkylbenzenes; CHE and others → Hydrocrackedproducts.The overall hydroconversion of CHE was achieved in the catalyst order: Pd/H‐ZSM‐5 > Pd/H‐ZSM‐5(HF) > Pd/H‐ZSM‐5(HCl). CHE hydrogenation step was the major reaction at low temperatures which significantly inhibited via HCl treatment, but slightly enhanced via HF treatment. At medium temperatures, on all catalysts, isomerisation to MCPEs and MCPA increase to a maximum then a decline with a further increase of temperature. The overall isomerisation of CHE was highest on the untreated catalyst. During the higher temperature range, dehydrogenation, alkylation and hydrocracking were increased with temperature. Dehydrogenation of CHE always yielded larger amounts of 1,3‐CHDE than 1,4‐CHDE. These cyclohexadienes were produced in the catalyst order: Pd/H‐ZSM‐5(HF) > Pd/H‐ZSM‐5(HCl) > Pd/H‐ZSM‐5. In general, benzene alkylation to toluene exceeded that of xylenes, indicating that the second methylation is more difficult than the first. However, the catalytic activities for benzene and toluene production were in the order: Pd/H‐ZSM‐5 » Pd/H‐ZSM‐5(HCl) > Pd/H‐ZSM‐5(HF), whereas for xylenes production, Pd/H‐ZSM‐5 » Pd/H‐ZSM‐5(HF) > Pd/H‐ZSM‐5(HCl). Intrapore diffusion plays an important role during the dehydrogenation reactions as well as during the interconversion of individual aromatic hydrocarbons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.