Abstract

Hydrogen-enriched natural gas (HENG) is one of the significant ways to store, transport, and utilize hydrogen energy. This paper presents the characteristics of HENG and flue gas, energy saving, carbon reduction, and condensate recovery potential of flue gas waste heat. Based on the theoretical and experimental study of the existing flue gas condensing heat exchanger (FGCHE) added at the rail of gas-fired boiler, the performance of the FGCHE under different hydrogen blending ratios is studied. The results show that augmenting the hydrogen blending ratio decreases the volume heating value of HENG, and CO2 content of flue gas. Meanwhile, the mass heating value of the HENG, the water vapor content, and dew point temperature of flue gas increase as the hydrogen blending ratio increases. The flue gas waste heat recovery utilization ratio and energy-saving efficiency of the FGCHE can be promoted. Moreover, the heat transfer capacity of the FGCHE using HENG is enhanced, while the flue gas flow pressure drop is reduced. Compared with the FGCHE used in pure natural gas systems, the all-hydrogen system increases the flue gas waste heat recovery amount by 62.4–120.4 %, reduces the flue gas flow pressure drop by 33.9 %, and reduces the carbon emission by 100 %.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.