Abstract

Hydrogenated single crystals Er2Fe14Bhx with different hydrogen contents are grown and their magnetic properties are studied for the first time. It is established that both the Curie temperature and the temperature of the spin-reorientation phase transition increase with an increase in the hydrogen content. In the Er2Fe14B single crystal, the contributions of the rare-earth metal and iron sublattices to the magnetic anisotropy decrease upon hydrogenation. However, their compensation occurs at a temperature higher than that in the initial compound Er2Fe14B due to the enhancement of the Fe-Fe and R-Fe exchange interactions. The effect of hydrogenation on the magnetic characteristics of the Er2Fe14B compound with a nanocrystalline structure is investigated. It is revealed that the hydrogenation leads to an increase in the coercive force and the residual magnetization of these alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.