Abstract

In this paper, the effect of hydrogenation on ring C of flavonols on the affinity for bovine serum albumin was investigated. Two differently substituted B-ring hydroxylation flavonols (myricetin and quercetin) and their dihydrides (dihydromyricetin and dihydroquercetin) were used to study their affinities for BSA by quenching the intrinsic BSA fluorescence in solution. From the spectra, the bimolecular quenching constants, the binding constants, the number of binding sites and the binding distances were calculated. The hydroxylation on ring B and hydrogenation on ring C of flavonols significantly affected the binding/quenching process; in general, the hydroxylation increased the affinity and the hydrogenation decreased the affinity. For myricetin and quercetin, the binding constants (Ka) for BSA were 1.84×108 L⋅mol−1 and 3.83×107 L⋅mol−1. For dihydromyricetin, the binding constant was 1.36×104 L⋅mol−1, while dihydroquercetin hardly quenched the BSA intrinsic fluorescence. These results showed that hydrogen bonding and conjugative effects may play an important role in binding of flavonols to BSA. These results also showed that the properties of flavonols are related to their chemical structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.