Abstract
The homogeneous charge compression ignition (HCCI) combustion was conducted on a modified engine to investigate the effect of hydrogen peroxide (H2O2) additive on the combustion and emission characteristics, such as the indicated thermal efficiency (ηi), the total hydrocarbon (THC), the carbon monoxide (CO) and the nitrogen oxides (NOx) emissions. A simulation using CHEMKIN software was also performed to analyze the experimental data. The results indicate that the addition of H2O2 facilitates the formation of hydroxyl (OH) radical and hydroperoxyl (HO2) radical in the cylinder under HCCI mode, which greatly affects the combustion and emission characteristics of the n-butanol HCCI engine. By adding H2O2, ηi increases, NOx emission remains at an ultra-low level, but THC and CO emissions reduce at almost all the test conditions. Especially at the low intake temperature (Tin) or low load condition, the improvements are very obvious, which suggests that addition of H2O2 may extend the low Tin and low load limits of HCCI engines.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.