Abstract
Most of the studies reported treats the effect of hydrogen on single dislocation line, while models that describe the collective interaction are missing. In this study, hydrogen-induced softening of metallic materials is studied from a perspective of collective behavior of dislocations. Building on the evolution of dislocation density, a hydrogen-informed expanding cavity model is developed for the first time to predict the dynamic evolution of load-displacement curve obtained from nanoindentation tests. Large-scale molecular dynamics simulations on the mechanical behavior of fcc Ni with and without hydrogen (H) charged are performed to calibrate the proposed continuum model. The results show that the H-induced decrease of indentation force is due to that the energy barrier for dislocation nucleation is lowered by the solute drag of the H atmosphere formed around dislocations. Envisioned as a complex non-equilibrium process, it is found that the power-law exponent of the self-organized criticality of dislocations increases due to the insertion of H atoms. Analysis also indicates that H can reduce the probability of dislocation pile-up, thus promote the delivery of dislocations to the surface of specimens during nanoindentation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.