Abstract

The effect of external high-pressure H2 gas on fatigue-crack growth behavior has been examined using a ferritic-pearlitic low carbon steel. The presence of hydrogen accelerates the crack growth rate by ≈13 times compared to the uncharged state and shifts the fracture surface morphology from ductile striations to a mixture of “flat” and “quasi-cleavage” features. The common feature found in the microstructure immediately beneath the hydrogen-induced fracture surface is enhanced plasticity in terms of refined dislocation cell structures and dense dislocation bands.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call