Abstract

In this study, the deformation microstructure of hydrogen-charged ferritic-pearlitic 2Mn-0.1C steel was characterized using SEM-BSE, SEM-EBSD, TEM, and neutron diffraction. The microscopic mechanism of hydrogen-related quasi-cleavage fracture along the {011} planes was also discussed. It was found that hydrogen increased the velocity of screw dislocations, leading to a tangled dislocation morphology, even at the initial stage of deformation (e = 3%). In addition, the density of screw dislocations at the later stage of deformation (e = 20%) increased in the presence of hydrogen. Based on the experimental results, it is proposed that a high density of vacancies accumulated along {011} slip planes by jog-dragging of screw dislocations, and coalescence of the accumulated vacancies led to the hydrogen-related quasi-cleavage fracture along the {011} slip planes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.