Abstract

In situ electrochemical nanoindentation has been used to study the effect of hydrogen on the nanomechanical response of Alloy 718. Observations show that hardness increase as a result of hydrogen charging. Also, the hydrogen charging gives a reduced pop-in load and pop-in width. This is related to a reduction in the energy needed for dislocation nucleation and the mobility of the dislocations in the presence of hydrogen. Two grains with different orientations has been tested here. The pop-in load and width obtained in the (101) orientation was more affected by the presence of hydrogen than those achieved in the (111) oriented grain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.