Abstract

For a hydrogenation heat exchanger operating under severe working conditions such as high temperature, high pressure and a hydrogen environment, perforation accidents caused by NH4Cl corrosion occur frequently. However, few reports on the effect of hydrogen on the corrosion behavior of metal materials in NH4Cl aqueous solution have been published. In this paper, X-ray photoelectron spectroscopy (XPS), electrochemical dynamic potential polarization, electrochemical impedance spectroscopy (EIS), Mott–Schottky (M-S) curves and scanning electron microscopy (SEM) were used to study the effect of electrochemical hydrogen charging (EHC) on the corrosion behavior of 321 stainless steel in an NH4Cl solution environment. The results show that: (1) hydrogen can change the structure and chemical composition of 321 stainless steel passive film and promote the conversion of metal oxide to hydroxide. At the same time, it can reduce the stability of the passive film. (2) Hydrogen can increase the thermodynamic and kinetic tendency of corrosion reaction and cooperate with Cl− to promote the occurrence of pitting corrosion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.