Abstract

The effect of hydrogen on the corrosion and stress corrosion cracking of the magnesium AZ91 alloy has been investigated in aqueous solutions. Hydrogen produced by corrosion in water diffuses into, and reacts with the Mg matrix to form hydride. Some of the hydrogen accumulates at hydride/Mg matrix (or secondary phase) interfaces as a consequence of slow hydride formation and the incompatibility of the hydride with the Mg matrix (or secondary phase), and combines to form molecular hydrogen. This leads to the development of a local pressure at the hydride/Mg matrix (or secondary phase) interface. The expansion stress caused by hydride formation and the local hydrogen pressure due to its accumulation result in brittle fracture of hydride. These two combined effects promote both the corrosion rate of the AZ91 alloy, and crack initiation and propagation even in the absence of an external load. Hydrogen absorption leads to a dramatic deterioration in the mechanical properties of the AZ91 alloy, indicating that hydrogen embrittlement is responsible for transgulanar stress corrosion cracking in aqueous solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.