Abstract

Two kinds of soy protein isolate, rice protein, whey protein isolate, albumen, bovine collagen hydrolysate, NaCl, and corn starch were used in this study. Solutions were prepared by mixing the powder and distilled water (1:8 ratio) and either H(2)SO(4) or NH(4)OH to obtain pH 3, 5, 7, 9, and 11. The solutions were dried to produce powders with different hydrogen ion concentrations and the powders were ground. Powders were coated nonelectrostatically and using negative and positive polarity corona electrostatically. There was no solution pH effect on transfer efficiency or adhesion for most powders. However, transfer efficiency and density of both of the soy protein isolates and corn starch changed with solution pH. Solution pH may have affected the density, which affected the transfer efficiency for these powders. Adhesion and cohesiveness of one of the soy protein isolates and corn starch also changed with solution pH. Solution pH may have affected the cohesiveness, which affected the adhesion for these powders. Negative and positive coronas produced the same results for most powders, with no solution pH effect, except for one of the soy protein isolates, rice protein, and corn starch. These powders accumulated on the electrode wires during negative corona electrostatic coating, reducing transfer efficiency and adhesion. This polarity effect was intermittent, implying it is due to tribocharging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call