Abstract

Gas phase graphene forms as an aerosol in a microwave plasma among other carbon forms. Consisting of 2–6 sheets per stack with dimensions between 100 and 500 nm, it is referred to as nanographene (NG). Surprisingly, increasing H/C ratio in the feedstock increases the relative graphitic content of the product. Dependence of the different carbon forms upon H/C ratio of the gas feed mixture is shown across multiple analytical characterizations. Attributes of (a) phase quality (pristine nature of NG) and (b) phase quantity (how much NG forms relative to other carbon sp2 phases) are addressed. Phase identification of the forms is performed via transmission electron microscopy with quantification by thermogravimetric analysis, assessing their respective oxidative reactivity benchmarked to commercially available similar carbon products applied as standards. X-ray diffraction differentiates these forms based on varied extent of graphitic structure. Electron energy loss spectroscopy assesses graphitic content by the ratio of sp2/sp3 bonding. Raman spectroscopy supports the observed shift in relative proportions of the carbon forms towards preferential graphitic content with increasing H/C. Selected area diffraction illustrates this for NG. Fringe analyses of nanostructure quantifies this shift for carbon particles. Infra-red spectroscopy reveals complementary CH bonding as a measure of graphitic quality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.