Abstract

A laboratory-scale laminar counterflow burner was used to investigate NO formation in high pressure premixed CH4/H2/air flames. New experimental results on NO measurements by LIF were obtained at high pressure in CH4/H2/air flames with H2 content fixed at 20% in the fuel at pressures ranging from 0.1 to 0.7 MPa and an equivalence ratio progressively decreased from 0.74 to 0.6. The effects of hydrogen addition, equivalence ratio and pressure are discussed. These results are satisfactorily compared to the simulations using two detailed mechanisms: GDFkin®3.0_NOmecha2.0 and the mechanism from Klippenstein et al., which are the most recent high-pressure NOx formation mechanisms available in the literature. A kinetic analysis based on Rate of Production/Rate of Consumption and sensitivity analyses of NO is then presented to identify the main pathways that lead to the formation and consumption of NO. In addition, the effect of hydrogen addition on NO formation pathways is described and analysed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call