Abstract

Titanium implant surface etching has proven an effective method to enhance cell attachment. Despite the frequent use of hydrofluoric (HF) acid, many questions remain unresolved, including the optimal etching time and its effect on surface and biological properties. The objective of this study was to investigate the effect of HF acid etching time on Ti topography, surface chemistry, wettability, and cell adhesion. These data are useful to design improved acid treatment and obtain an improved cell response. The surface topography, chemistry, dynamic wetting, and cell adhesiveness of polished Ti surfaces were evaluated after treatment with HF acid solution for 0, 2; 3, 5, 7, or 10 min, revealing a time-dependent effect of HF acid on their topography, chemistry, and wetting. Roughness and wetting increased with longer etching time except at 10 min, when roughness increased but wetness decreased. Skewness became negative after etching and kurtosis tended to 3 with longer etching time. Highest cell adhesion was achieved after 5–7 min of etching time. Wetting and cell adhesion were reduced on the highly rough surfaces obtained after 10-min etching time.

Highlights

  • Ten-year implant survival rates are very high (>90%) [1]

  • This study demonstrated that the duration of HF acid etching affects the topography, chemistry, wetting, and cell adhesion of Ti surfaces

  • Cell attachment appeared to be favored by increased roughness, it was reduced on the highly rough surface obtained after 10 min of etching time

Read more

Summary

Introduction

Ten-year implant survival rates are very high (>90%) [1]. Some clinical situations (e.g., immediate loading, post-extraction implantation, sinus lift, systemic disease, poor bone quality, or osteoporosis) require improved implant surface characteristics to obtain a rapid cell response and early osseointegration and thereby prevent implant failure. The topography and wettability of the surface influence the first stages of bone formation, the quality of osseointegration, and the ability to retain the initial blood clot [2,3]. In vitro investigations at cellular and molecular level and histological studies have suggested that the surface properties of the implant affect bone formation at the interface by modulating the adherent cell phenotype [4].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call