Abstract

The concentrations of Ca, S, Al, Si, Na, and K in the pore solutions of ordinary Portland cement and white Portland cement pastes were measured during the first 28 d of curing at temperatures ranging from 5–50 °C. Saturation indices with respect to solid phases known to form in cement paste were calculated from a thermodynamic analysis of the elemental concentrations. Calculated saturation levels in the two types of paste were similar. The solubility behavior of Portlandite and gypsum at all curing temperatures was in agreement with previously reported behavior near room temperature. Saturation levels of both ettringite and monosulfate decreased with increasing curing temperature. The saturation level of ettringite was greater than that of monosulfate at lower curing temperatures, but at higher temperatures there was effectively no difference. The solubility behavior of C-S-H gel was investigated by applying an appropriate ion activity product (IAP) to the data. The IAP CSH decreased gradually with hydration time, and at a given hydration time the IAP CSH was lower at higher curing temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.