Abstract

AbstractA model for water permeability reduction in hydrate‐bearing sediments is presented by considering capillary effect in hydrate nucleation. Both grain‐coating and pore‐filling cases are considered. The model is developed from a series of lattice Boltzmann flow simulations. Results show that the permeability decreases quasi‐linearly with increasing hydrate saturation during grain‐coating nucleation and that the permeability tends to be higher than predicted by previous analytical models, in which capillarity is not taken into account. The permeability follows unique reduction curve and is not so sensitive to initial sediment bulk density and grain size distribution. Simulations further show that there is a transition zone at Shyd = 0.3~0.4, where permeability reduction trend switches from grain‐coating model to pore‐filling model. Analyses of tortuosity and surface area confirm that the permeability reduction mechanisms result from pore‐channel blocking in grain‐coating case and pore size reduction in pore‐filling case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.