Abstract

The growing use of high-performance materials, which are made of hybrid composite systems, has increased rapidly in engineering applications. Hybridization of woven carbon, glass and Kevlar fibre offers better mechanical properties of composite materials. This is also an effective way to reduce the cost of advanced composites. At the moment information on compressive properties of hybrid composites is very limited. It is well known that the compressive strength of composite materials is lower than the tensile strength. Therefore, compressive strength becomes one of the most important criteria in designing composite structures. Therefore, this research is aimed to evaluate the compressive properties of hybrid composites and compare to the properties of neat systems. Hybrid composite samples were fabricated using a vacuum bagging system. The compressive properties of Kevlar hybrid with carbon and glass composites were studied using an INSTRON 3382 universal machine with a constant crosshead speed of 1 mm/min. The compressive properties were determined based on the stress-strain diagram. It was observed that for hybrid composites, placing carbon woven cloth layers in the exterior and Kevlar woven cloth in the interior showed higher compressive strength than placing glass woven cloth layers in the exterior and Kevlar woven cloth in the interior. The modes of failure of the hybrid composite laminates were observed and evaluated using optical microscope and scanning electron microscopy (SEM).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call