Abstract

The effect of hybridization of conduction electrons and f-level on superconductivity (SC) and antiferromagnetism (AFM) in the coexistent phase of rare-earth nickel borocarbide superconductors (RNi2B2C) is reported. The Hamiltonian of the system is a mean field one and has been solved by writing equations of motion for the single-particle Green functions. It is assumed that superconductivity arises due to BCS pairing mechanism in the presence of antiferromagnetism in nickel lattices of Ni2B2 plane. The expressions for superconducting and antiferromagnetic order parameters are derived using double time electron Green functions. The quasiparticle energy bands are plotted and the nature of band dispersion of the quasiparticles is studied.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call