Abstract

ABSTRACTHollow microspheres (HM) of ceramic, silica, and glass‐filled silicone rubber (SR) composites were prepared, and the effects of hybrid HM on thermal and mechanical properties of composites were investigated. The results indicate that hybrid HM can effectively improve the thermal insulation property of HM/SR composites. Especially, for sample 15S, the thermal conductivity and thermal degradation temperature reached 0.1273 W/m K and 521 °C (45 °C higher than that of neat SR), respectively. Besides, thermal insulation performance was improved, showing as a temperature of 103.2 °C after 15 min heating, which is 37.8 °C lower than that of SR. The tensile strength of composites was enhanced from 1.92 MPa at 11.56 vol % hollow silica microspheres (HSM) loading to 3.08 MPa at 21.88 vol % HSM loading. Moreover, the compressive strength was improved from 3.33 to 5.68 MPa by introducing more hollow ceramic microspheres into the matrix, in this case, from 7.79 to 15.33 vol %. Furthermore, the failure mechanism was analyzed. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 46025.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.