Abstract
Commercially available friction modifiers are used in many different countries that have widely different atmospheric conditions. These variations in atmospheric conditions lead to varying levels of railhead oxidation and debris build-up. Friction modifiers can be applied to the rail without any prior cleaning of the rail and this can lead to varying friction modifier/iron oxide ratios potentially affecting the performance of the friction modifier. This paper reports the results of an investigation that was performed to determine the effects of varying atmospheric and oxide conditions on the performance of friction modifiers. A pin-on-disk test rig with an attached environmental chamber was used for the study. Results show that relative humidity has a pronounced effect on the way in which the friction modifier affects friction levels, and also the amount of time it remains on the disk. This also depends on the concentration of oxide in the friction modifier. Glow discharge optical emission spectroscopy analysis was also carried out to assess the effect of the friction modifier and atmospheric conditions on the chemical composition of the surface of the disk. Results show that the depth of surface modification is vastly different depending on the conditions and level of railhead debris.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.