Abstract

This study focuses on the role of the water content on the effective thermal conductivity of porous ceramics placed in different conditions of relative humidity. Fully stabilized zirconia samples with variation in the capacity to take up water were prepared by varying the temperature of the thermal treatment. The pore volume fraction of the dried samples decreases from 56% down to 30%. Thermal conductivity measurements were made on samples placed in a chamber where the relative humidity was fixed between 3% and 99%. For all samples, the experimental values of the effective thermal conductivity increase significantly with the water content. Experimental results agree closely to analytical predictions based on the upper limit of the Hashin and Shtrikman expressions for calculating the thermal conductivity of the pores (constituted by air and water) and Landauer's effective medium expression for calculating the effective thermal conductivity of the material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call