Abstract

Abstract This paper presents the effect of humidity on electrospun polycaprolactone (PCL) nanofiber formation using needleless electrospinning for drug delivery application. The nanofiber was made using a NS Lab needleless electrospinning working at the applied voltage of 45 kV. Polycaprolactone in dichloromethane was the polymer used with curcumin as the embedding model drug. Morphology of the fiber was analyzed using scanning electron microscopy and the fiber size distribution was studied using Fiber Metric image analysis tool. An increase in fiber diameter from 100 nm to 145 nm was observed when the humidity factor was raised from 40% RH to 60% RH. The fibers produced are also much more uniform at 60% humidity. The model drug, curcumin was loaded into a PCL nanofiber with entrapment efficiency up to 93%. The controlled release of curcumin from the scaffold under physiological simulated conditions shows a significant release of curcumin within 48 hours of test. This work may serve as a useful guide to obtain a high-quality nanofiber from needleless electrospinning process for drug delivery application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.