Abstract

ABSTRACT The ethyl cellulose samples of thickness 30 μm were prepared using solution grown method. The samples were polarized by means of thermal polarization for preparation of thermoelectret. The charge storage stability and the transport of detrapped charges in the EC thermoelectre were investigated by surface potential decay and open-circuit thermally stimulated discharge current (TSDC) analysis. The mean penetration depth for EC at different environment humidity and polarizing temperature were calculated. The results indicated that the charge stability of EC was significantly affected by relative humidity. Keywords: ethyl cellulose, thermoelectret, charge storage stability, surface charge potential e-mail: mulayamgaur@rediffmail.com INTRODUCTION Ethyl cellulose is a weakly polar polymer having several applications not only in the field of medical material but also used as a Pharmaceutical material. The slight polar nature of the polymer is due to the difference in electronegativity of the main chain bonds and its side group. A charged piece (i.e. electret) of EC can be used as skin permeation enhancer. The stability of dipole orientation and space charge storage of EC is directly related to the effect of drug skin permeation. Therefore, the study of electret state, stability of dipole orientation and ability of space charge storage of EC for electret-drug transdermal delivery system are of great importance in basic research

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call